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We are grateful for the many insightful comments provided by the discussants. One

team politely pointed out oversights in our literature review and the subsequent omission

of a formidable comparator. Another made an important clarification about when a more

aggressive variation (the so-called NoMax) would perform poorly. A third team offered en-

hancements to the framework, including a derivation of closed-form expressions and a more

aggressive updating scheme; these enhancements were supported by an empirical study com-

paring new alternatives with old. The last team suggested hybridizing the statistical aug-

mented Lagrangian (AL) method with modern stochastic search. Below we present our

responses to these contributions and detail some improvements made to our own implemen-

tations in light of them. We conclude with some thoughts on statistical optimization using

surrogate modeling and open-source software.
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1 Updates, initialization, and performance metrics

Picheny et al. made an important observation. When the AL parameters (λ, ρ) are updated

aggressively, as is the case when the updates in Algorithm 1 are applied after every inner-loop

step during which a candidate xk is chosen, the average performance is improved. We can

confirm that this is indeed the case, and some illustrations are provided along with a short

comparison in Section 2. Our original updating scheme was designed conservatively, keeping

in mind a statistical reinterpretation of the commonly applied AL updating rules (see, e.g.,

Nocedal and Wright, 2006). In our initial scheme, the inner loop is terminated—causing

updates to occur—only after progress has plateaued, that is, when no change is seen in the

expected improvement (EI) search under the current, fixed set of (λ, ρ) parameters. We did

not experiment with these updates further because the initial scheme compared favorably

with other methods.

Had we not overlooked an important comparator (Section 2), we likely would have fo-

cused more on the (λ, ρ) parameter updates. We appreciate now that the performance of

the method during early iterations depends intimately on the frequency of the parameter

updates and their initialization (especially for ρ). This new focus on early progress gave us

a fresh perspective on hybrid statistical/mathematical programming strategies for blackbox

constrained optimization, and how performance on that task is measured. Tracking the

best valid value of the objective—a sensible metric in blackbox settings where feasible solu-

tions are demanded and computational budgets limit evaluations—is well matched to many

statistical optimizers, especially ones like EI, which involve little to no lookahead. EI, for

example, has been shown to choose the next input as if it were its last (e.g., Bull, 2011). By

contrast, AL methods actively search in invalid regions to ensure long-term progress. This

property is at odds with our best valid value metric and is in fact amplified when using a

global statistical strategy such as ours. A more aggressive update and initialization, when
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paired with global response surface models and EI, turns out to be a better hybridization

under that metric.

The initialization we now prefer involves choosing ρ0 to balance the magnitude of ob-

jective function values f(x) with the magnitude of the penalty term involving the squared

constraint violations. In the AL given in (3), the factor 1
2ρ

weights the latter term relative

to the former, and we therefore choose ρ0 so they are about the same nearby to the most

promising objective and constraint values observed in an initial design {xi, f(xi), cj(xi)}n0
j=1.

Specifically, let

ρ0 =
mini=1,...,n0{

∑m
j=1 max(cj(xi), 0)2 : cj(xi) > 0 for some j = 1, . . . ,m}

2 mini=1,...,n0{f(xi) : c(xi) ≤ 0} .

The denominator is not defined if the initial design has no valid values (i.e., there is no xi

with cj(xi) ≤ 0 for all j). In such cases, we use any of the values of f in the initial design

(e.g., the median) in place of the undefined term in the denominator. Conversely, if the

initial design has no invalid values and hence the numerator is not defined, we default to

ρ0 = 1.

This choice of initial penalty parameter ρ0 ensures that the algorithm starts in a more

neutral position in the sense of balancing the objective versus penalty through the con-

straints. Furthermore, this initialization has the added benefit of being invariant to scalar

multiples of the objective and/or constraint functions (i.e., the effect of ρ0 is unchanged for

min{αf(x) : βc(x) ≤ 0} for any α, β > 0). Whereas our experiments on the toy problem

previously started with ρ0 = 1/2, so that the initial weight was 1.0 on the quadratic penalty

term, the new ρ0 values (found via an initial uniform design of size n0 = 10) are closer to

1/16, giving a weight eight times greater. Thus this “more neutral” stance is more aggressive

on this problem. The updating scheme of Picheny et al. ensures that it becomes even more

aggressive as optimization trials evolve. Before examining the performance under this new
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scheme, we consider a new comparator.

2 Overlooking an important benchmark

Chen and Welch politely pointed out an important oversight: Schonlau et al. (1998) provide a

simple, EI-based scheme for handling multiple constraints that is easy to adapt to the known-

objective case. Chen and Welch showed empirically that this method, which we call “EIC”

for “expected improvement (under) constraints,” compares favorably with our surrogate

modeling AL hybrid scheme, as we originally presented it. To ensure that comparisons were

just, we implemented our own version optim.eic (augmenting the original optim.auglag)

in the laGP package for R; as the discussants suggested, this implementation was relatively

straightforward. As can be seen in the left panel in Figure 1, the EIC comparator (solid red)

reliably achieves the minimum after about 25 blackbox evaluations.1

These results, and those provided by Picheny et al., showed clear room for improvement

in our hybrid AL implementation. Indeed, aggressive updates and more neutral initialization

of the AL parameters (λ, ρ) lead to dramatic improvement on this toy example. The solid

black line in the left panel of Figure 1 shows the average performance of this modified AL

scheme, which is almost as good as EIC. EIC makes faster initial progress and may converge

as many as five iterations earlier on average.

We have found that this behavior—slightly faster initial progress by EIC but ultimately

both methods having similar convergence—is persistent across a wide range of synthetic test

problems. For example, we created a harder, d-dimensional version of the toy problem. In

this harder version, the second, ultimately nonbinding constraint which is the interior of a

circle centered at the origin in the original d = 2 problem, is expanded to a d-ball through

c2(x) =
∑d

i=1 x
2
i − 3/2. As the dimension d increases, the volume of the ball intersecting the

1This echoes the results provided by Chen and Welch; however, our search for the next point by EI does
not utilize a simulated annealing.
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Figure 1: Left: a reworking of the comparison offered by Chen and Welch on a five-
dimensional version of the toy problem; right: a variation on the toy problem with the
second constraint replaced by the negative of the first constraint. The solid lines assume the
constraint functions are known; the dashed lines model the constraint functions with GPs.
All lines shown are average values calculated over 100 random initializations.

nonnegative orthant shrinks, thereby shrinking the valid region. The dashed lines in the left

panel of Figure 1 show progress on the d = 5 case. The story is similar: slightly faster initial

progress by EIC but then nearly identical performance afterwards.

Although EIC has many attractive features, the nature of how constraints enter into the

selection criteria makes it prone to pathology when the valid region is very small. For a

convincing illustration we consider a rather extreme case where the two constraints are the

opposite of one another, inefficiently encoding an equality constraint. Adjusting our toy

problem, we take c2(x) ≡ −c1(x), so that the valid region has measure zero; that is, it is

a submanifold along the sinusoidal curve traced out by the level set c1(x) = 0, within the

original two-dimensional space. We clarify that this is a well-posed problem in the framework

targeted by the original manuscript,2 and we acknowledge that more efficient ways exist for

2Technically, one would need to write c2(x) = −c1(x)− ε (with ε > 0) for some of the theoretical results
regarding constraint qualification to be justified.
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handling equality constraints with the AL (e.g., as suggested by Picheny et al.). EIC struggles

with this case because no part of the input space satisfies both constraints. If we suppose

the constraints are known (i.e., rather than modeling and estimating probabilities for use

in the EIC calculation, we use the true probabilities, 0 or 1, in the EIC expression), the

performance is exceedingly poor, as shown by the solid red line in the left panel of Figure 1.

By contrast, AL performs well in that setting (solid black line). Note that since the valid

region has measure zero, we must relax the progress criteria. In this figure, for both AL and

EIC comparators, we treat c(x) ≤ 10−3 as approximately valid.

AL does well because the criteria uses c(x) values directly, rather than the c(x) ≤ 0 values

of EIC or probabilities thereof; EIC does poorly in part because mapping to probabilities

(or Booleans) discards information. The dashed lines in the figure show a more realistic

case, where the constraint functions are modeled with GPs. The distinction here is not as

stark, but AL is still superior. EIC’s paradoxically improved performance relative to a case

where perfect information is available can be attributed to inefficiencies in the GP modeling

code and conservative choices of priors on the parameters that govern the characteristic

lengthscale and noise (nugget). Although we do not show these results, the closer those

values are chosen to their (unknown) ideal settings, the worse the EIC method performs.

The take-home message is that a better predictor for c(x) can lead to worse performance by

EIC.

3 NoMax and correlated outputs

We are grateful to Hare et al. for their comments on the applicability of an aggressive

variation of the AL formulation that we dubbed NoMax. The discussants correctly pointed

out—and offered convincing support with both theoretical and practical arguments—that

this heuristic can lead to poor behavior by (incorrectly) making some nonbinding constraints
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active. In particular, problems arise when the solver is initialized within the domain of at-

traction of a nonbinding constraint. However, we feel that the situation may be more nuanced

in our particular context of global optimization (via AL) under expected improvement.

Indeed, as Hare et al. remarked, when objectives are linear and the solution lies on the

boundary of one of the constraints, the NoMax heuristic works well. We add that, in our

experience, it works well regardless of how the search is initialized. The results are not

always superior, but we have not noticed their being pathologically bad. The explanation is

that our EI search is global and is therefore less sensitive to initialization. One can, of course,

engineer situations, for example by modifying the objective, where the pull of a nonbinding

constraint is too great to be overcome by a global EI search. We remind the reader that we

acknowledged the risk of NoMax in our original manuscript and do not advocate its use in

general practice.

Hare et al. also correctly pointed out that correlated (or joint) modeling of all outputs may

lead to improved response surface estimates and subsequently to improved EI calculations

and faster convergence. For example, ideas along these lines are summarized in Chapter 6

of Santner et al. (2003). Unfortunately, one is rarely aware of how constraints may be

correlated with one another or with the objective, especially when the simulator is a blackbox.

In their discussion, Hare et al. offered an example comparing independent models with

correlated models, and the results were mixed. Our own experience is different. When

assuming one of the standard multi-output modeling apparatuses—for example, co-kriging

in the style of Mardia and Goodall (1993)—we find that the tight coupling of correlated

outputs leads to poorer prediction compared with otherwise independent modeling of the

spatial fields. This happens even when known correlation is present between the fields. The

reason is that the assumption of a common/shared lengthscale (and global scale), as typically

deployed when co-kriging, is rarely appropriate.

One important exception may be when the objective is known to be anti-correlated with
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some constraint(s). This is a typical situation, one exemplified by both our examples, and

one that may not require peeking into the blackbox to confirm. One can even argue that

constrained optimization problems are hard precisely because at least one of the constraints

typically operates in opposition to the objective function, in other words, that the objective

function is lowest in a region where at least one constraint is not met. In such a setting, we

have found that directly acknowledging negative correlation in the response surface model(s)

improves results (see, e.g., Pourmohamad and Lee, 2015). Indeed, even more flexible mod-

eling can allow fitting of negative correlations for active constraints and no correlations for

constraints that do not interact with the minimum.

4 Taxonomies, annealing, and final thoughts

In their discussion, Picheny et al. presented a characterization of simulation-based con-

strained optimization problems. We emphatically agree that solution approaches may fun-

damentally differ depending on the specific nature of the constraints; such characterizations

are thus critical for algorithm development and benchmarking. The characterization of

Picheny et al. is based on the (relative) computational expense of the constraint and ob-

jective functions. A more general taxonomy of simulation-based constraints is the QRAK

taxonomy of Le Digabel and Wild (2015). In addition to distinguishing between a priori

and simulation-based constraints (which respectively can be coarsely viewed as cheap, al-

gebraically available and expensive, blackbox constraints), the QRAK taxonomy captures

information about the constraint functions that could be useful for statistical modeling pur-

poses.

In particular, two other distinctions in QRAK are whether a constraint output is quan-

tifiable or nonquantifiable (i.e., nonordinal) and whether a constraint must be satisfied in

order to get meaningful output from the simulation outputs (unrelaxable, as opposed to the

8



complementary relaxable case). As a specific example, each of Picheny et al.’s first three

cases likely has an implicit assumption that the constraint functions are quantifiable and

relaxable; this is an assumption that we also make for our AL method. The final distinction

in QRAK is whether a simulation-based constraint is known or hidden, the latter being re-

lated to Picheny et al.’s fourth case when the simulation crashes and no further output or

flags indicate the reason for the crash. We agree that statistical methods can play a role in

addressing problems with various combinations of each constraint type.

We thank Cheng and Liang for their discussion of simulated annealing methods for op-

timization. Stochastic approximation annealing (SAAn) can significantly improve the con-

vergence times of the algorithm; use of population methods can further improve efficiency.

Although the papers cited address only unconstrained optimization, Cheng and Liang sug-

gested that using this approach on the AL function could achieve the best of both worlds. We

would be interested in seeing the results of this hybrid approach. A complication, however, is

that the AL is not a fixed function in x as is typically assumed of an objective function. In-

stead, the AL depends on parameters λ and ρ that are updated during the optimization. We

thus wonder how well SAAn would adapt to such a moving target. Also unclear is whether

this hybrid algorithm would retain convergence guarantees. Should SAAn not be sufficiently

adaptable for a moving target, one could apply it in the context of more traditional penal-

ized approaches, where a fixed penalty parameter attempts to drive the optimization into

the region of feasibility.

We remind the reader that the AL framework, described in the original paper and em-

bellished here thanks to the thoughtful discussions, has been fully implemented in the laGP

package for R. To address a comment from Chen and Welch, we note that the software pro-

vides an option allowing the objective to be modeled with a GP, even though our original

article (and this rejoinder) ignored that case for simplicity. We also understand from Picheny

et al. that AL has been implemented in DiceOptim (Ginsbourger et al., 2015); this is excel-
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lent news. In our view, open-source software is sorely lacking for surrogate-modeling-based

approaches to optimization, constrained or otherwise. The Journal of Statistical Software

recently published a special issue on optimization in R (volume 60, 2014), but it is troubling

that no article therein highlights a statistical methodology applied to optimization. Obvi-

ously, such codes exist; but the information is not spreading as rapidly as we would hope.

These are powerful techniques that are relatively straightforward to apply—especially ones

like EIC—given mature GP response surface modeling libraries. We our hope that these and

future open-source projects become more widely recognized in the literature.
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